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Background

From ansaldoenergia.com and cblade.it

Design of gas-turbine components needs to take into account, among others:

� Eigenfrequencies

� Excitation sources

Target: minimise resonance phenomena during engine operation
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Blade natural frequencies

During compressor stage design, blade eigenfrequencies are computed and associated

to specific vibrational modes.

1WB 2WB 1T 2T 1CWB 2CWB SWB TURTLE

Increasing frequencies

Advantages of automatic mode detection:

� Correlate frequencies and mode shapes during geometry optimisation;

� One-to-one association of mode shapes from FEM to measurements.
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Inputs & Method



Inputs

� Blade images taken only from FE

modal analyses

� 4 different engines

� 11 stages per engine (avg)

� 373 images

� Crop and resize to 64x64 pixels

� 8 classes due to dataset size

� Split: 85% training, 10% validation

� 5% test (2 unseen compressor stages) 2WB images for different stages
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Data Augmentation

Data is randomly augmented by means of keras

ImageDataGenerator :

� Horizontal shift [−23, 23] %, fill with white

� Brightness [80, 125] %

� Zoom [90, 150] %

� Channel shift [−150, 150]

� Horizontal flip

� Vertical flip

� Rescale values 1./255

16 randomly-augmented images - same input
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Method

3 64 8 64

dropout 0.25

16 32 32 32

dropout 0.25

81
92

Flatten

12
8

8

SoftMax

� 1.05 M parameters vs 770 M for Fully-Connected NN

� Dropout 25% and Data Augmentation → Overfitting ↓
� Target accuracy is %

Structure:

� 3 Conv layers

� 2 Max-Pool layers

� 3 FC layers

Grid Search:

� Optimizer → Adam

� Learn Rate → 0.001

� Init func → uniform

� Activation → ReLU

� Dropout → 25%
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Target Accuracy



Human Benchmark

A survey was carried out among the team

89 images out of 100 were classified unanimously by all participants
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Human Benchmark

A survey was carried out among the team

89 images out of 100 were classified unanimously by all participants

Sources of error:

� Distraction

� User experience

� No info on other modes within batch

� No possibility of further checks

Target

Target for the model is % accuracy 7
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Model Training

The model is trained on:

� 200 epochs

� Batch size: 16

Training Results

� Accuracy: Training and validation reach a value > 90% → Target achieved;

� Loss: Loss curve is volatile due to small dataset used for validation;

� Trade-off between getting the most out of training keeping validation set

reasonably big. 8
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Test accuracy

The performance of the model is evaluated on a test set.

Stage 1

Total accuracy on test set: 94.1 %
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Network insights
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Network insights
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Insights in a nutshell

� Deeper CNN layers have a bigger receptive field on the input image;

� Feature extraction advances over consequent convolutions;

� But.. network complexity easily leads to overfitting.
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Conclusions & Next Steps

Conclusions:

� CNN model has been trained on augmented dataset;

� Limited-size dataset → Volatile validation loss;

� Number of classes limited to 8;

� Target > 90% accuracy achieved.

Next Steps:

� Investigate possibilities to increase dataset size;

� Assess improvement of validation loss upon dataset increase;

� Define approach for additional mode shapes;

� Investigate performance of more complex newtorks running on GPU.
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Thank you!
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